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Rejoinder
Ian W. MCKEAGUE and Min QIAN

We greatly appreciate all the hard work that the editors and
the discussants put into providing enlightening comments. Their
original perspectives on post-selection inference have led us to
a deeper understanding of the problem. We have organized our
rejoinder along the lines of their key questions. After recapping
the main ideas in the adaptive resampling test (ART), we address
the broad issues in order of increasing difficulty: the need for
scale-invariance, calibration via simulation, robustness to model
misspecification, the detection of weak dense signals, variable
selection, and the problem of finding “honest” confidence sets.

ART is based on finding a suitable calibration for the test
statistic

√
nθ̂n, where

θ̂n =
ĉov(Xk̂n

, Y )

v̂ar(Xk̂n
)

and k̂n = arg max
k=1,...,p

|Ĉorr(Xk, Y )|

is the asymptotically unique index of the maximally correlated
predictor. Our main result shows that it is possible to correct
for the failure of the centered percentile bootstrap (CPB, or
what many of the discussants call the “naive” bootstrap, Efron
and Tibshirani 1993) in the neighborhood of the null hypothe-
sis. This is achieved by adapting to evidence of nonregularity
by resampling from an observed process Vn that is indexed by
an (unidentifiable) local parameter b0 ∈ Rp representing uncer-
tainty in the regression parameters at the

√
n-scale.

The central idea of ART is to calibrate the test statistic
√

nθ̂n
by adaptive bootstrapping:

A∗
n =

√
n(θ̂∗

n − θ̂n)1reg∗ + V ∗
n (b0)1nreg∗ ,

where reg∗ = {max(|Tn|, |T ∗
n |) > λn} indicates that the post-

selected t-statistic along with its bootstrapped version exceed
a threshold, so draws that agree with the CPB are “acceptable.”
On the complementary event, nreg∗ = {max(|Tn|, |T ∗

n |) ≤ λn},
there is evidence of a nonregular limit and the more sophisti-
cated bootstrap V ∗

n (b0) is needed to take into account the local
asymptotic behavior of θ̂n.

Theorem 2 shows that A∗
n consistently estimates the limiting

distribution of
√

n(θ̂n − θn) under arbitrary
√

n-scale perturba-
tions of the regression parameters. At the null hypothesis we
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can set b0 = 0, so without having to cope with a function of b0,
critical values are readily obtained. Our contention is that the
problem of detecting the presence of significant predictors can
be handled in a similar fashion for more sophisticated classes
of marginal regression models; the tractability of the linear re-
gression case, however, makes it an ideal testbed for the general
approach.

1. SCALE-INVARIANCE

Several discussants raise the point that the test statistic
√

nθ̂n
used in ART is not scale invariant. To compensate for this, Shah
and Samworth (SS hereafter) recommend prestandardizing all
variables before applying ART. They note that failure to do so
could result in a substantial loss of power, as they show in a sim-
ple example. Although counterintuitive (since the fitting of lin-
ear regression is impervious to scale changes), scale-invariance
is crucial in variable selection problems. Indeed, the standard-
ization of predictors is routinely recommended when shrinkage
methods are applied in high-dimensional regression, (see, e.g.,
Hastie, Tibshirani, and Friedman 2009, p. 63).

Zhang and Laber (ZL hereafter) suggested that ART should
be based on the scale-invariant t-statistic Tn = θ̂n/sn, rather than√

nθ̂n, as did Brown and McCarthy (BM hereafter). ZL went on
to discuss how our approach can be readily modified to apply
to Tn (which they denoted ξ̂n), and noted that the resulting
procedure is almost identical to ART (when Y and Xk have
unit variance). Chatterjee and Lahiri (CL hereafter) suggested
an alternative scale-invariant test statistic (denoted $n) that we
discuss later.

The expedient to the lack of scale invariance in ART that
we prefer in practice is SS’s suggestion of prestandardizing all
variables. The reason we used the test statistic

√
nθ̂n (rather than

maximal sample correlation) in ART is that the theory is simpler
to explain (less cumbersome notation), the connection to robust
CIs for the slope parameter more direct, and to make our results
potentially relevant for more general marginal regression mod-
els. Our simulation studies used only standardized predictors, so
the conclusions are not affected. To address the invariance issue,
however, we have retrospectively added a comment in the article
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about the need to prestandardize (just after the description of
the ART procedure).

2. CALIBRATION VIA SIMULATION FROM
ESTIMATED NULL DISTRIBUTION

SS note that “under the global null that Y and X are indepen-
dent” the limiting distribution of

√
nθ̂n, after standardization of

variables, does not depend on the distribution of Y when it can be
assumed that ϵ and X are independent. In that case, simulation
of

√
nθ̂n using Y ∼ N (0, 1), Y ∼ its empirical distribution, or

Y-permutations, will indeed provide accurate calibration. Fur-
ther, this would provide substantial computational savings over
ART.

ZL had a similar suggestion: simulate from the estimated
null limiting distribution of Tn = ξ̂n = θ̂n/sn, which they called
a parametric bootstrap. This approach requires an estimate of
cov(X), and they propose that the sample covariance matrix
ĉov(X) (without regularization) is adequate for this purpose
because the null limiting distribution of Tn is a smooth function
of cov(X).

We agree that these approaches provide substantial computa-
tional savings, but their validity depends on the highly restrictive
assumption that ϵ and X are independent. On the other hand, our
results justifying ART only require ϵ and X to be uncorrelated.

When ϵ and X are dependent, the null limiting distribution
of

√
nθ̂n can depend on the distribution of Y , in which case the

Y-permutation and other simulation methods suggested by SS
break down. The method of ZL also breaks down since it no
longer suffices to estimate cov(X). As we show later using a
simple simulation example, their approach can result in inflated
Type I errors when ϵ and X are dependent. Moreover, by a simple
extension of Theorem 1 of the article, to simulate draws from the
null limiting distribution of Tn, moments of the form Eϵ2XjXk

would need to be estimated. It is not clear how that could be
done when ϵ and X are dependent. In fairness to the discussants,
however, in the version of the manuscript that they initially saw,
we inadvertently made the assumption of independence between
ϵ and X, even though in fact we only needed zero correlation.

A further difficulty with the direct simulation approach, which
relies on having an accurate estimate of cov(X) (not needed in
ART), is that uncertainty about cov(X) is not taken into account,
and it is not clear how that could be done (although we admit
that in the simulation examples studied by ZL there does not
appear to be a problem in this regard). Another consideration is
that in more complex types of marginal regression models (such
as quantile regression), the limiting distribution can depend on
nuisance parameters that are hard to estimate, so a bootstrap
approach is desirable.

3. ROBUSTNESS TO MODEL MISSPECIFICATION

We are indebted to Brown and McCarthy (BM) for prompting
us to reexamine the proofs of our main results to confirm that
they still justify ART in the “assumption-lean” (Buja et al. in
press) setting of ϵ and X just being uncorrelated, as discussed
above. In reference to their query concerning sandwich estima-
tors (in Section 2 of their discussion), we agree that there is a
close parallel to our Theorem 1. Nevertheless, the Huber–White
sandwich formula for the asymptotic variance of M-estimators
only applies in regular settings, whereas our version also re-

Figure 1. Empirical rejection rates based on 1000 samples generated
from the heteroscedastic simulation model (1) as the dimension p ranges
from 10 to 200, for n = 100.

flects nonregularity. More specifically, from our Theorem 1,
the asymptotic variance of θ̂n when β0 = 0 does not reduce to
a sandwich formula because K is random, so V −1

K cannot be
factored out of the expression.

We agree, however, that this parallel suggests that ART is
much more flexible and robust to model misspecification than
we originally thought. To examine this question, we devised the
following simple simulation example in which we assess the
Type I error control of ART when ϵ and X are not independent,
just uncorrelated, and compare it with the “direct simulation”
tests statistics ξ̂n, ζ̂n, and ψ̂n proposed by ZL. The following het-
eroscedastic model has no linear effects, so H0 : θ0 = 0 holds:

Y = ϵ ≡ X1X2 + δ, (1)

where Xk ∼ N (0, 1), Corr(Xj,Xk) = 0.2, and δ ∼ N (0, 1).
Moreover, note that EϵXk = E((X1X2 + δ)Xk) = 0, so
cov(ϵ, X) = 0 and ART should provide adequate Type I error
control. Indeed, Figure 1 confirms this and shows that the direct
simulation approach has inflated Type I error.

4. DETECTION OF WEAK DENSE SIGNALS

ZL proposed a test statistic ζ̂n for detecting weak dense signals
(in contrast to a sparse signal), and provide simulation examples
showing that it has better power than ART in such settings.
Further, they proposed an adaptive parametric bootstrap test
statistic that combines ξ̂n and ζ̂n into a statistic ψ̂n that adapts to
an unknown level of sparsity.

Chatterjee and Lahiri (CL) make a similar proposal with their
test statistic$n, and suggest calibration by either naive bootstrap
or direct simulation from the estimated null (which is a weighted
sum of chi-squared random variables in this case). They report
simulation results for ART under both spiked and weak-dense
signals (in models with ϵ and X taken to be independent), and
claim that ART performs “slightly worse” in the latter case, and
that$n has greater power. This is consistent with the simulation
results presented by ZL. These are inventive proposals, but they
appear to produce at most a borderline improvement in power
over ART for weak dense signals (see Table 2 of ZL), and
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the concern that they are not robust to model misspecification
remains.

5. VARIABLE SELECTION

Barut and Wang (BW hereafter) investigate via simulation the
variable selection performance of forward stepwise ART, and
find that its performance declines as the correlation between co-
variates increases. This is not surprising as the proposed forward
stepwise ART uses residuals from the previous stage as the new
outcome, which essentially removes the effect of the remaining
variables if they are highly correlated with already included vari-
ables. However, our argument is that although forward stepwise
ART may not be variable selection consistent, it has high pre-
diction accuracy, as we show in the real data example in Section
4.4. BW surmise that the variable selection performance of ART
would be improved if it could be extended to forward regression
by allowing the coefficients of already-included variables to be
refit at each step (Barut, Fan, and Verhasselt 2015). We agree,
and view this suggestion as a potentially fruitful direction for
future research.

BW conclude their discussion with an illuminating analy-
sis of conditions under which stepwise marginal screening has
the property of “faithfulness,” that is, being able to recruit ac-
tive variables with high probability, and they compare with the
analogous conditions for the Lasso. This relates to the broad
and challenging problem of how to ensure variable selection
consistency along with the provision of accurate post-selection
inference.

6. CONFIDENCE INTERVALS

Several of the discussants, including Li, Mitra and Zhang
(LMZ hereafter), SS, and Leeb, express interest in constructing
CIs for marginal regression. In particular, LMZ provide a lucid
explanation of how the bootstrap used in ART relates to various
naive bootstrap procedures that are not expected to work. They
also carry out a simulation study to assess various CIs that are
related, though not identical, to what we discuss in the article.
They compare coverage rates for the selected signal θk̂n

and
the “strongest population signal” θ0, concluding that reliable
inference for θk̂n

is the best that can be achieved in the case of
weak signals. In contrast to our proposed CI, none of the adaptive
bootstrap procedures of LMZ involve maximization over a local
parameter. We expect that maximization of quantiles over the
local parameter, even though computationally expensive, along
with the use of the double bootstrap for selecting the threshold,
would result in better coverage of θ0.

Leeb discusses the inherent difficulty of forming “honest”
CIs when the limits of sampling distributions depend on lo-
cal parameters b0 =

√
nβn (in his notation), in which case the

target parameter βn cannot be estimated with good accuracy at
any sample size (Leeb and Pötscher 2006). Our results extend to
limit distributions along sequences of local parameters bn → b0,
and b0 can even be infinite (corresponding to a nonlocal alterna-
tive), but it is not clear whether that is enough to produce honest
CIs of the type that Leeb would like to see (Leeb and Pötscher
2014). Adapting to arbitrary sequences of parameters βn hav-
ing varying rates of convergence seems very challenging. Leeb
also raises the interesting question of whether the uniqueness

assumption for k0 (the index of the strongest signal) could be
relaxed in Theorem 1. Indeed, this can be done, although at the
expense of a more complex limiting distribution.

Belloni and Chernozhukov discuss orthogonal score func-
tions for constructing uniformly valid confidence sets for pre-
conceived regression parameters (via a multiplier bootstrap pro-
cedure), where the uniformity is with respect to an underlying
sparse model, see Belloni, Chernozhukov, and Kato (2014b). In
related work, Javanmard and Montanari (2015) had developed
accurate CIs for any given slope parameter in linear regression
based on a de-biased Lasso estimator. In these approaches the
dimension p is allowed to grow with n, but the resulting CIs
are not suitable for the marginal screening of large numbers of
predictors unless a Bonferroni-type correction is applied, which
would be extremely conservative in high dimensions.

An interesting direction for further research would be to try
to adapt these ideas to construct honest and computationally
tractable CIs for θ0 in marginal regression with growing dimen-
sion. The use of orthogonal score functions (as outlined in the
discussion of Belloni and Chernozhukov) could potentially lead
to an important extension of ART in which there is adjustment
for high-dimensional controls that are automatically included in
every marginal regression; this might be achieved by extending
the approach in Belloni, Chernozhukov, and Hansen (2014a).
At present, however, even formulating the type of asymptotic
justification that would be needed under growing dimension
seems challenging because post-selection is inevitably involved
in the estimation of θ0, and it appears difficult to find a normal-
ization of

√
n(θ̂n − θn) that scales in a tractable fashion with

dimension.
At the end of their discussion, ZL made the interesting sug-

gestion that a target parameter such as the “soft-max” (that
depends smoothly on the regression parameters) would offer a
feasible alternative to θ0 in terms of avoiding the need to handle
complex asymptotic arguments need to justify the honesty of
CIs. While we are sympathetic to this idea, we believe that the
loss of interpretability in using a surrogate for θ0 is too high a
price to pay. Further, we would expect that the ad hoc nature
of an estimand that depends on a tuning parameter would make
the approach vulnerable to the same post-selection difficulties
already inherent in θ0.

We conclude with a philosophical point. In his famous essay
The Hedgehog and the Fox, Isaiah Berlin drew attention to a
dichotomy between the need to know many things, as with the
fox, or to know one big thing, as with the hedgehog. That is,
whether to prefer “a single, universal, organizing principle” on
the one hand, or to “pursue many ends, often unrelated and even
contradictory” on the other. By analogy, the fox has scattered
knowledge about a vast collection of regression parameters, but
(at least with some ART and the help of our gracious discussants)
the hedgehog may know θ0, the biggest of all.
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